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Atmtract

Defect formation and trmsport in a hydrogen-bonded system is studied via a

rwo-sublattice soliton-bearing one-dimensional model. Ionic and orientational defects

are dissociated with distinct nonlmca.r topological excitations in the present model.

The dynamics of these excitations is studied bolh analytically and wlrh the use of

numerical simulations, It is shown that the two types of defects ar~ soliton solutions

of a double Sine-Gordon equation which describes the motion of the promns in the

long-wavelength limit. With each defect [here is an associated deformation in the

ionic lattice that, for small speeds, follows the defect dynamically albeit resisting its

motion. Free propagation as WCII tis collision properties of [he pro[on soli[ons” :lrc

prcscntcd.
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1. Introduction

Electrical conductivity in hydrogen-bonded crystals k an old problem that

recently has been revived with the introduction of new techniques and ideas from

nonlinear physics. As with several other problems in biology, such as ( for

instance) the dynamics of biopolymers, it provides a new and exciting arena

where nonlinear, soliton-type modes might be responsible for energy and charge

1-3 Hvdrogen bonding is not only ubiquitous in the living matter but ittransfer. .

also provides the dominant mechanism for crystallization m a variery of chemical

substances, such as hydrogen halides. 4 An understanding of the electrical proper-

ties of systems wkh hydrogen bonds will provide information for a wealth of phy-

sical and biological systems and processes ranging from “simple” systems such as

ice to the more complicated processes of proton transport across the cellular

membranes, the proton pump, or the dymamics of protons in the vis]cn related

molecule rhodopsin. 3

A great deal of activity has been devoted to the understanding of the physi-

cal and electrochemical processes that arc responsible for the arlomalously high

proton mobility ill the most common hydrogen-bonded cry~tal, i.e. that of ice.

Onsager associated the conductivity in ice, which is not electronic but protonic in

nature, to a hopping mechanism that allows the protons of lhe hydrogen bonds m

~move along hydrogen-bonded atomic channe!s. 6 Experimental cvirtence strongly

indicates that charge transport proceeds via the motion of two types of defects

that cart be present in the network, viz. the ionic defects and Lne rotational (or

Bjerrum) defects. 7-1 ] The former involve an intrabond motion of the (unique)

binding pro[on, whereas the latter result froln interbond or interatomic motion of

the protons tha[ arc duc 10 rotations of ihe watrr mclccules. Weiner nnd

Askar ‘z “Introduced [hc idea of u rollcc[ivc [runsirion of the intcrw[ing pro[on”

systc[n th:t[ could cxpl~in qu:ili[;l[lvclv IIIC ionic dcfc~’[ crcntion :In(l II)()[i()n NIId
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suggcsted that an analogy holds with the creation and movement of dislocations

in crystals.

13 !ecussed theirMore recently, Antonchenko, Davydov and Zolotariuk

attention on explaining quantitatively the creation and transfer of ionic defects in

hydrogen-bonded systems. They introduced a two-sublattice model [ADZ

model) in which proton transport in zn infinite one dimensional chain (realised

physically in ice through a Bernal-Fowler filament 14) can proceed collectively via

the propagation of two-component $4 solitons at a given characteristic velocity

II.. Lyapunov stability 15 and stability of solitons during collisions 16 have been

studied and a variety

for the ADZ model.

were introduced ‘s’19,

of interesting dynamical properties have been detected 17

Some extensions to other hydrogen-bonded configurations

including a thermal activation mechanism for the ionic

defects 20, Finally, the interesting case of a quadratic phonon coupling was shown

to lead to exact soliton solutions with rich dynamical properties. 21

With regard 10 the oricntational defects, there have been rccen: attempts

aiming at the understanding of their formation and dynamics. The original Bjer-

rum picture 7 has been replaced by a cc}llrctive mechanism representation either

by a direct incorporation of the dipole-dipole interaction in the Ham iltonian ‘ZIZ3,

or via other effective approaches 24,

Athough the aforementioned models provide quan titat ivc in f~~rmation

regarding the mllective proton dynamics that s[ems from the nonlinear stucture

of the hydrogen bond, they all sufter from the same defect, viz. they take into

account only one or the other of the possible two types of defects in [hc

hydrogen-bonded networks. This is very rc~,trictivc, especially since there rxIsts

~n abundance of cxperimcnlal cvidencc R “ [ha[ C.ktiriy SUggCSI [hti[ /NJ//I I~pCS of

de fcuts pitrtiuipatc in the Irnnsfcr of ~hiirg~ ;Icross the hv(irogcnbondcn” nc[work.
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The incorporation of both ionic and Bjerrum defects into a single classical

model has been introduced recently ‘5. In this model the essen~ial physical

requirements of the hydrogen-bonded networks were introduced and thr resulting

solvable collective dynamics was shown to lead [O defect creation and propagation

in the form of Iwo-component solitons. In the present paper we extend the

model introduced in ref. 25 and begin a thorough analytical as well as numerical

study of its slatic and dynamical properties. We emphasize that our present study

adresses for the first time quantitatively, both analytically and by the use of

numerical experiments, the simultaneous collective dynamics of borh r-yps of

defects present in ice and other hydrogen-be nded materials.

In the present paper we will restrict ourselves to the exposition and analytical

study of the two-defect model and emphasize its physical consequences. We will

present numerical simulations for the model that support and extend the analyti-

cally derived results. In particular we will present numerical experiments that

determine the free propagation and collision properties of the defects. Some

aspects of defect dynamics in the presence of an externally applied electric field

have been presented elsewhere. 26

The structure of the present paper is the following: In section 2 we describe

the two-defect model in detail, We give the classical Hamiltonian for the system

(2.1) and discuss the physics of the assumed substrate potentiid as well as the

interaction potential. In (2.2) we discuss the degeneracy of the ground states, in

(2.3) derive the dispersion relations in the harmonic approximation and in \ 2.4)

wc write the equations of motion in the continuum limit and give ~heir solutions.

In section 3 we describe the numericitl simuht:ions performed imd antilyzc [hc

t“rce propagation of the soli[ons and in pitriicular study [heir collision pr~)pcrtics.

I;innlty in section 4 wc conclude tIV discussing [hc physics of [hc ~x~llisions NSw(’II

iis (~lhcr pr(}r -r[ics of Ihc discrctc svstcm,
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2. Description of the Model and Analytical Results

A t~-pica! one-dimensional hydrogen bonded network consists of two coupled

sublattices: one is that of the negative ions (or a group of atoms), and the other

is that of protons. In a one-dimensional geometry, this configuration would be

represented by:

...X- H.,.X-H...X -H... X-H.,.

where X denotes an ion (usually O, F or N) or an aggregate. and H is a hydro-

gen that 1s bonded covalently (or through an ionic bond) with an adjacent ion

(full link) and forms a hydrogen bond with another ion (do~ted link). The

covalent and hydrogen bonds in a X - H...X configuration are interchangeable, viz.

the proron in the bond that links the two X-ions together can tunnel between two

equilibrium positions that are energetically equivalent. Thus the nature of the

effective potential for the proton is that with two stalk equilibrium positions

separated by an unstable one. A typical example of such a potential for the pro-

ton in the hvdrogen bond, 20 is the well-knowr double-well potential, viz.

}’(~)=- %ia2 + 114bx4, where a, b depend on the specific systcm under study.

Because of the double-well structure of the inter-ion bond, there arc two

equilibrium configurations for the extended system; onc with all the protons in

one minimum (say left) and the other when all protons arc in the other

minimum (say right), Excitation from either of these equilibrium configurations,

i.e. displacement of a particular proton from a left to a right well, in a all-left

ground st.ate, results in a &/ecr in the lattice. This ckfcct carries cffeclive charge

(positive or negative) and is an ionic defecr. In the cxsc of ice, i,c. when the X -

ions are oxygcns, there are two types of ionic de fcc~s, viz. hydrcxvl ion (0}/ - )

wt[h ncgiitivc effective charge tind hydrflniurn ion (H IO + ) with positive cfc-c[ivc

char~c. The sponrancous crcti[i(~n and pr(~pngn[ion (}f these dcfccvs h:Is ilccrl S[U

di~(! c~lcilsj~cl~ tin(l their (jvn;inli~.f h:lvc been USCd [[) cxpl;iin s(}Inr IJ[’ tllc
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electrical properties of the ice crystals. 8-11

In the past models with double-well potentials for the inter-ion linkage have

been s[udied systematically in the context of the dynamics of protons in hydrogen

bonded systems. Such models have been shown to lead to kink solitons that

represent the ionic defects in the crystal. 12,13,15-21.27 The main disadvantage Of

such potentials, however, is that they cannot take into account the orientational

defects that are known to be present in a hydrogen-bonded system. The latter

defects are due to rotations of entire water molecules (in ice) with a net result

the appearance of a second proton in a given hydrogen bond (D-Bjerrum defect)

or the disappearance of a proton from a bond resulting in an empty bond (L-

Bjerrum

involves

tial, can

defect). Since macroscopic charge transfer in hydrogen-bonded systems,

both kinds of defects, all models that are based on such a type of poten -

provide only partial information on the dynamics of protons. In particu -

la.r, conduction properties of the protons cannot be addressed with such poten-

tials.

To circumvent these difficulties, it is necessary to adopt model substrate

potentials for the protons that, on one hand retain the topology of the double

well potential which is essential for the proper description of the hydrogen bond,

and, on the other hand, allow for an effective charge transfer between adjacent

hydrogen bonds that comes as a result of the Bjerrum rotations. This can be

accomplished with the introduction of a doubly periodic substrate, that

accommodate both types of defect formation that are known experimentally to

important role in the electrical properties. We proceed by describing

double-defect model,

can

play

the
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2.1 The Hamiltonian

The total Hamiltonian H of a quasi-one dimensional system described

through the present model, cosists of three parts, i.e.

H ‘Hp+H~+Hi f (2.2)

where HP is the Hamiltonian

and Hi is the interaction term

for the proton MIblatticc, 1/0 for the ion sublattice,

between the two. We have:

Hp =
dye 47C

~ [1&(~)2 + ‘/~l(Y.+1-Y~)2 + ‘pvl(~Yn) 1
n o

In eqs. (2.2), m, M denote the mass of the protons and ions

the corresponding spring cons[ai~ts and % is the positive

(2.2a)

(2.2b)

(2.2C)

respectively, K 1, K z

coupli.n~ parameter

between the two interacting sublattices. The displacement y. ~i the n-th proton

is measured from the central unstable equilibrium pos{*lm in the hydrogen bond,

i.e. from the middle of the bond that links th> Ions, whereas Yn, the displace-

ment of the n-th ion, is measured frorr its equilibrium position. The equilibrium

distance between two heavy ions M taken to be /0. We assume that in both

chains, only the nearest neighbors interact among :hemselves. The combined

effects of Coulomb repulsion and screening are included in the on-site potentials,

for both sublattices. 26 It is appropriate to introduce the following dimensionless

quantities:

47r Y“
u“ = —yn , wn=—

1“ 1(1
(2.3)
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With these definitions, the substrate potentials in eqs. {2.2) are written:

V,(un) = +[cos(+)-a]2, Ocac 1
L

1*
v~(wn) = ywn

while for the interaction term of eq. (2.2c), the function @(um ) ; defined:

w%) = Cos(;)-Cos(;), u. = 2arccos (u ) ( 2.4c)

The potential V ~(un ) is the on-site potential for the proton sublattice (Fig. 1) and

it is chosen to satisfy the physical requirements posed by a hydrogen-bonded net-

work. If we assume that the rest ion position is where that larger maximum

occurs, then the two loca.i minima separated by the smaller maximum represent

the two proton equilibrium positions within the hydrogen bond and the larger

barrier represents the energy necessary for a Bjerrum rotation to take place. If a

proton has enough energy, such rotation is possible, and the proton can move to

the other side of the large barrier. The activation energy for such a rotation in

ice is larger than the one for the creation of an ionic defect. This is so because

the former results only after two covalent and two hydrogen bonds arc broken.

In systems where this might not be true 4, a different value in the parameter a is

necessary.

One disadvantage of the potential of eq. (2,4c). is that it depends only on

one parameter, viz. u. Consequently, one cannot assign independent values to

the relative maxima of the potential. With the proper choice of the parameter a

however, we can simulate the respective values of the hydrogen bond barrier and

the Bjerrum rotation energy to reasonable accuracy for several hydrogen-bonded

systems.
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Vl(wn) is an an-site harmonic potential that acts on the heavy ions. This

potential is created from the interaction of :he quasi-one dimensional chain under

study with the rest of the crystal and guarantees the rigidity of the lattice. The

parameter SO in eq. (2.2b) measures the strength of :his effective interchain

interaction.

between the

requirement

Finally, the potential function @(un ) determines the interaction

two sublattices. The functional form of this term is restricted by the

that when either sublattice is at an equilibrium position, the interac-

tion term of the Hamiltonian in eq. (2.2c) must be zero. The particular form

chosen in eq. (2.4c), clearly has these properties cnd its choice has been dictated

by the specific form of the substrate potential V ,(un ). As we will show shortly,

for this

In

v,(u).

coupling, analytical solutions to the equations of motion can be found.

Figure 2a, we compare the potential CD(U) with the on-site potential

We observe that O(u) has its maximum value at the top of the

hydrogen-bond barrier and its minimum in the location oi the ions. This depen-

dence leads to the following behavior in the interaction term of eq. (2.2c): Let us

assume that the difference in the displacements of the ions, Yn- Yn_ 1 is positive

Ieadin g to a local rarefacrion in the ion sublattice and that the coupling parameter

Z is positive as well. In this case then, the form of the interaction potential O(U)

favors a tendency of the protons to move away from the ionic barrier and closer

to the ions, in either side of the hydrogen bond, due to the even symmetry of the

potential. P.s a result wc have an effective reduction of the rotational barrier

(large banicr). On the other hand, when there is a compression in the ionic sub-

lattice, then Ym- Yn. ~c O, and we now have a reduction in the ionic barrier. This

situation is depicted in Figure 2b where there is a comparison of the substrate

potential with -~(u). We conclude, that when z is positive, a compression wave

in the ions will help in the creation and the motion of the ionic defects whereus a

rare faction wave will tend to help the motion of the B@rrum defects. Clearly. [he
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opposite holds, for negative Z. The sign of the nonlinearity parameter plays an

important role in the physics Of the problem and i[ will have to be deter~nined

according to the specific system under study.

‘he equations of motion for the Hamiltonian of eq. (2.2) can be written, in

dimensionless form, as follows:

d%n .dvl(u.) d~(un)
= a)~(un+l–hn+un.l) – Q f—— –

7 dun
Xl(wn–wlz-1) ~u (2.5a)

n

d2wn flz(wn)
= 6&wn+@wn+wn_l)-i2; ——+~z[o(un+ l)–qun)l (2.5b)

d~2 dwn

In eqs. (2.5) as well as in what follows, we use the following units:

Energy : CO = 1.986x 10-23J

Time : to = 0+-1= (M IKZ)%

length : 10

With these choices, energy is measured in cm- 1 and for mass and force we have

the following derived units:

mass : nO = E* 102/102

force : f~ = E./10

Potemial Consrant : K. = EOI !:

This system of units is introduced in order to facilitate the numerical computa-

tions and to enable the comparison of the results with experiments. Using the

above defined fundamental and derived units, we determine the values of the

cons[ants and parameters that are present in the equations of motion in eqs.

(~.~):

~l~o lA=[(G)’A
(1+ = [–K=] o—

0 m
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r’

xl = (4#Q = (4 K)2102XfOm ml.

Xmo = 43(-—
‘2-foM ~

With these definitions, all coefficients are dimensionless.

For the specific case of the ice crystal that we are considering in the simula-

tions (in section 3), we have chosen values for the parameters that arc consistent

with the recent literature on the subject. We take to = 2.OX 10-13, 10 = 2.7x 10-10,

m= 1.67x 10-27 and M = 2.84x 10-26. The actual value for the coupli~g

coefficient % is not known with accuracy since there are several uncertainties

regarding even the exact form of the interactio~. term, For a coupling coefficient

x = l. Oxl O-lO, X1 and X2 become 1.4x103 a:; d 0.52 respectively. In the simula-

tions we are reporting in the present paper we chesc a substantially smaller value

for z 29; larger values in the coupling enh. --- $’i~ stability ef the non-t opologic;]l

excitation in the ionic sublattice.

2,2 Ground States

[n its ground state, the systcm can hc found in two (modulo 47T) eneigcti-

cally equivalent but topological]y distinct configurations. Both of thrse state

occur when the heavy ions arc in equilibrium, i.e. when M’fl=() and ii]] pr{)[ons
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Occupy equivalent minima of the periodic substrate potential, i.e.

Un=t U*, mfXf(47t).

The period of the on-site potential for the protons is 4R. Within one period,

the potential v l(u ) has a local maximum for u= O., and a global maximum at

u=27c. The corresponding heights of the barriers are

times the coefficient SP. We note, that once a is chosen, the relative strengths of

the potential barriers are fixed. The parameter a determines the relative distance

betwcei~ the m?xima and minima in the potential as well, si~]ce the first minimum

occurs at the value ~~in=uO=2~ccos (a),

2.3 Harmonic Limit

When the amplitude of the motion of the particles in the system is small we

can approximate eqs. (2.5) with a new set of coupled equations, For this lineari-

zation procedure to take place, we assume that the displacement y. of the n-th

proton from its equilibrium position t UO is small and the corresponding Smilll

displacement of the n-th ion is w=. We now have the following equations of

motion:

where

(2, fiil)

(2,0b)
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~nd the upper (lower) sign refers to equilibrium position + UO (– UO), with

-+ Uo+yn.u=-

The equations

ing masses. Each

of motion (2.6) represent two coupled linear chains of vibrat-

mass in either chain vibrates around an equilibrium posi[ion

undei the influence of a harmonic potential and is coupled to the nearest neigbor-

ii~g masses with linear springs. The two chains couple through the last terms (on

the r.h. s.) in eqs. (2.6a) and the interaction energy between the two is bilinear in

the displacements.

In order to calculate the low-amplitude vibration dispersion relations, we

assume solutions of the form

)’” = y e-ire eikn , w“ ikn=we-’~e. (~.7)

[Jpon substitution of eqs. (2,7) in eqs. (2.6), we obtain

[-~z+p~]yf ~’l(l-ei~)w = O (2.8a)

(2.8C)

coupling between the two chains is zero, the dispersion relation

branches given by p, and pz. This is depicted in Fig. 3n, where

When the

consists of two

tiir upper branch is the proton dispersion curve and the lower one is the ion

dispersion curve. Thrsc dispersion curves arc modified when we turn the cou-

pling on. T},c new dispersion relation can bc easily cvtiluated from the diiigor)ull

r.~iti(~n of the cocfficitnt mn” -ix in :qs, (2.8) Icading to:
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sound velocity in the proton sublattice and decreasing the sound velocity in the

ionic su blattice. Therefore, as x increases, large wavelength ion waves are slowed

down but the can move with larger speeds via the protons. This situation is dep-

icted in Fig. 3b, c, for some larger X-values.

2.4 Continuum Limit

Although the phy’;cal hydrogen-bonded network is a system with discrete

symmetry, analytical results can only obtained in the continuum limit, where the

excitations are assumed to extend over distances large compared to the lattice

spacing. In this limit, equations (2.6) become:

dv~
wTT–v(;wu+Q +-—----

dw “%= ‘)

where x, ~ are thr dimensionless space and time variables, co= 01, Uo= 1

represent the speed of sound in the protonic and icnic sublatticc respectively,

xl, X2 we ProPortio~al to z and Q I*

In the specitil case when fl ~ =

equation for the protonic sublutticc:

12 ~ arc proportion til to S,~A,S,,’’”respectively.

0, cqs. (2, 10) lead to a double-sine Gord(~r~

while f(}r the tl~ilVv suhluftice WC h;ivc:

(2,11a)

(TIIIJ)
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with

(2. llc)

where ~=x -W and u is the traveling wave velocity. The parameter & defines a

new effective barrier height for the double-sine Gordon equation; when ~= O the

30-32 For xl, ~2=~# O this coefficient contains theknown results are recovered .

influence of the heavy sublattice on the ionic one. We observe that for traveling

velocities smailer than VO

effect occurs for v> VO;

coefficient ~. Gin the other

the effective barrier decreases, whereas Y oposite

this holds independency of the sign of the coupling

hand the sign of w{ ( =WX) in Eq. (2. llb) depends on

the velocity v. When the traveling velocity v is equal to the value of the sound

waves in the ionic sublattice, viz, VO, equations (1. 11) seem to have a singularity

and fclr larger velocit;~ va]ucs Wg changes sign. In this latter case an initially rare

fatting tendency in the ionic lattice becomes compressive and vice-versa. The

apparent singularity, the physics of which is discussed below, dissapears when

Q @ O.

As is well known, the double-sine Gordon equation (2.1 la) results in twc

types of kink solutions that in the present model represent ionic and Bjerrum

defects respectively. Equation (2.1 lb), on the other hand, defines an excitation in

the he;~vy-ion sublattice that is formed becuuse of {he topok>gical excitiii[i(~ns of’

eq, (2.1 la), The non-travclling wave solutions of cquatit)ns (2. I 11 L’illl Ilc

{Jbtaincd easily 30-”32; they arc given by:

It/( \, ’() ‘= [4nn t 4;~rVtilIl -A’ t:lIlhl K,, ( L- 1,)) - fll,,~] 1 (212;1)
;J//(t,T) [(2?1t I)(?n) + 4;11”1’(; 11) A’ ‘t;llltl [A, (t-1,, )- f2,, Tl

I
(2.12/))

~vtlrrc
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R = [(l–u)/(l+u)]’A , K, = yL/2d , Q, = Kfv

t = [l-(wco)p , (f = co/fl~ . (1 = cos(uo/2) (2.12C)

for the protonic part, The solution for the heavy ion motion can be easily

obtained from inserting eqs. (2.12) into eq. (2,1 lb). After integration, two kink-

type solutions are obtained for W(X ,7), the displacement from t?e equilibrium

positions

The

of :he heavy masses in the ionic sublattice.

static solutions of the the eqs. (2.12) above provide two types of kinks

for the prolonic sublattice

and for each of those a

When a kink is present in

( small and large kink, and the corresponding

nonlinear kink-type excitation in the ionic

the protonic sublattice then a deformation is

antikinks)

subl:~.tticc,

created in

the ionic sublattice that can travel with it, as long as

not exceed the speed of sound in tli~ ionic chain,

forrnev is larger than that, the ionic de formtition

cf’fcciive resistance exerted on the kinks reduces. In

blc kink-solutions for rhc two subl~ttices,

the velocity of the kinks do

When [he velocity of (he

lags behind and thus the

Fir. 4,5 we present [he d:>u-

Whcn Qtx 0, tl~e shape of the deformation i;~ the ionic Iatticc changes and

tiri~l~ii~iil solutions of the form givtn by eqs, (2.12) are no longer ~VililillllC. 11

is howc ~cr possible to obtain an ,i:jproximii(e solution for the ~wmposltc no(i

linear t;xitations for one ptirticular “ ;il.je of the velocity of the moving c.x~.itati(}n,

i.c when the latter moves with vc!~l~’;ty v= ~J(,, which is the vcloc’ity of sound in

fhc l(~rll~-l:tt!icc, For this vel(~~-ity, rq, ( 2. lob) l}cuf)rncs incrti:ilrss :ltld wc (~t)t:lln:

(2,1{)
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more complicated that eq. (2.1 la), in that i~ contains a term proportional to u! as

wel! as u .-dependent coefficients. These additional terms, however, tire propor-

tional to X2 which is in the present case much !ess than 1 and therefore can be

neglected to the lowest order. Consequently, cqs. (2.12) me good approximate

solutions for the presen, case of C?~< O and U=UO for the protonic sublattice ( this

is readily justified in the numerical simulations as well). Combining eqs. (2.1 2)

with (2. 13) and after some straightforward algebra \ve obtain tile following forms

for the nonlinear excitations in the ionic sublattice:

(2.1%)

where ~l(x, r) and U1l(X, T) are given m cqs. (2.12). in Figure 6 we present the

approximate solutions for the ionic subkitticc with fl =0.1. The proton mliion

solutions correspond to those plotted in Figs. 4a and 5a. It is evident that the

shtipc of the ionic de formiltion caused by the protonic kink has changed dr:imali -

cal]y from u kink -[ype to a gradient or shock-like wave, It is worth pointing {~u[

that the ionic dcfermation is asymmetric in terms of impression and r:ircfiics[ion

and it is quite different for the smiIll and Iorge kinks rcspccrlvcly (this asymmetry

was present in the ionic kinks as well as can bc verified from I;igs. 4C :Inc! 5c!,

This is due to the different t~p~logi~iil properties of !he proton

interesting ramifications in the mobility of tht Itirge kinks, It h:~s

if) the cotnputcr simulations of the systcm un(icr study. thtit the
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3. Simulations

In this section we present the results of the actual numerical experiments

perfcrmed on the system. We have chosen a one dimensional crystal with 4(K)

ions and equal number of protons placed periodically with a lattice spacii, g l..

The equations of motion for the discrete system were those given in eq. (2,5).

Th:y wert integrated numerically, using a fourth-order Runge-Kutta scheme with

double precision arithmetics. The integration time-step was kept the some for all

sirnu Jations and equal to Ar=(). ()1. With a typical time (in narural units) of

[m= 100, this amounts to Ar:<L~= 10000 iterations, for a typical run. We chose

fixed boundaries for the protorric chain and semi-free for the ionic chain, viz. the

first ion WJS kept tix~d and the last ion was free to move, The initla! conditions

for [he proton. !a:tice were chosen according to the solutions of the double sir)e -

Goxidrr eq~lat]orr. ‘I-hc ionic h[ticc was taken to bc initia ,Y at rest. As noted

before, these arc true solutions of the continuum equations of ~lotion only when

L1~=(). in the simulations, *;’e imposed a weak substrate potential (Q ~=(), 1) and

thus thtse itrc no longer exact solutions of the systcm. Since the actuul vfilue o

the substrote is very small, this discrepancy does not affect appreciably the evolu

tion of the proton solitons.



-19-

ionic substrate exerts on them increases substantially. This effect is accompanied

by a dramatic increase in the amplitude of the oscillations of the heavy ions, con-

sistent v’ith Eqs ( 2.13), where K~-+= when V+VO, For initial kink velocities

!arger than u,, the effec!.ive mobility of the kinks is much smaller tharr ttlat for

v< U.. In fact, for relative small velocities compared tc CO, viz. US 5. the propa-

gation of the free solitons is quickly inhibited by the interaction with the ions.

The sharp reduction of the mobility of the proton solitons at velocities compar-

able to UO is seen in the numerical simulations where rrrobilities are determined.

Having discussed briefly the properties of the free propagation of the proton

kinks, we now come to their collision properties. We ncte here that our experi-

mental conclusions regarding these properties secm to agree with the resilts of

Campbell, Pe}Tard and Sodano, who performed a thorough analysis of the pro-

perties of (one component) kinks in the double Sint, -Gordon equation, ~z That

is, the presence of the ionic substrfite, although profoundly altering the free kink

dynamics, does not affect substantially their basic collision properties.

There ure various pairs of solitons that can undergo a col!ision. Let us first

consider a small kink -antikink ptiir; physically this corresponds to two different

ionic defects with equal und opposite charge. in the :l~merical experiment, we

place thr kink -antikink pair in two distant positions in the one dimensional sys-

tem with several values of initial (oposite) velocities. We typically observe tw(o

effects in such a collision: (u) For rclittivcly srilall initial welocitics the w~litons

pcnctratc each nther, annihilate, and in their place lea~’e ti spatially loctilizcd t~scil--

latiorl. “rhis hhitvi{)r rorrcsponds to the trapping of the small kil~kiintikillk d(~t]-

II1C Sine-(.i[}rd~Jn pillr reported IJV (’ilm[)bCll Ct iii. WhlUh 1S ilCCortlpilnl C’i tl~ il



inelastic collision occurs and ~he two kinks do nor pass through each other but

rc~ecr. This behavior persists till the upper critical ve]ocity CO is reached. This

property s consistent with th ~ findings of Campbell et al. as well; however, a

conversion of two small kinks into two large ones us

double Sine-Gordon equation has no: been cbserved

Representative plots for the evolution of small kinks

Figs. 7, 8.

reported in ref. 31. for the

in the system under study.

(ionic defects) are given in

The evolution of rhe kink-an tikink pair presented in Fig.

trasted with the one in Fig. 7. In Fig 7 the solitons are moving

Fig. 8 they move faster than the characteristic veloci,y UO, the

8 should be con-

siower whereas in

velocity of sound

in the ionic lattice. Because of this, in rig. :.b the second soliton component is

not formed and only a small wave-like distur’]znce follows the kinks. As a result

of the collision, large amplitude ionic oscilla ions are formed that cannot follow

the speedy kinks.

Both an;, ihilation and reflection of the ~lnall ~ink-antikink p~ir can be under-

stcmi physically in terms of the itctual protorlic motion in the effective douhle -

wells of the hydroge,~ bonds, Let us assume for simplicity that a kink (iintikink)

is fairly loctilized and involves only three tidj:lccnt protons. Then, the transition

region in a left-right-left state (small kink -antikink pair) involves basically two

tidjacent hydrogen bonds, both of which have the corresponding protons in the

right well of the hydrogen bond, Sir,ce the k, ‘ks arc c~>unterpr[~p:~gtitirlg, the

spring connecting these two protons will bc comprcsscd, If the vcloci; ics be!”ore

the collision w-e small, then the collision will affect only these two a(i,~iiCCnt pro-

t(~ns leiidirl~ tt~ ii decaying osc.il!:ition during which the energy rclctisrd during the
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transfered to the next neighbors and as a result the latter will move from left to

right configurations.

When a pair of

properties observed

This is equivalent to the reflection of the two kinks.

large kinks are counterpropagating in the crystal, the collision

are different. Indeed, for all velocities tested we observed a

conversion of ~he large pair into a pair of small

ment with reference 32 as well, The conversion

occurs because it is energetically more favorable

kink-an tikinks. This is in agree-

of the iarge pair into a small one

for the protons to move across a

small barrier (the hydrogen-bond), rtither than accross the large barrier (Bjerrum

rotations). This behavior is depicted in Fig. 9. We note that the excess of the

large kink potential energy is distributed into (a) kinetic energy for the resulting

and faster moving small kinks and (b) potential energy in the heavy ion sublattice

that causes large amplitude oscillatio~ls. As a result of the inability of heavy ions

to follow the speady kinks, a local oscillatory mode is created.

When a small kink moves against a large Kink, we have a collision situation

similar to that of a small mass colliding with a large mass. Here, the large kink

passes its momentum to the small one, which subsequently reverses its direction

of motion.

Finally, when all four kinds of kinks are present in the system, the properties

of the system can be understood from the analysis

collision. An exmple of a situaticn where all four

depicted in Fig. 10.

of the individual “elementary”

types of defects are present is



-22-

4. Conclusions

We have presented a study of a nonlinear model for the motion of defects in

quasi-one dimensional hydrogen-bonded materials. Although

have appeared recently addressing the collective dynamics

hydrogen-bonded systems, none of these models can a.ccomodate

defects that are known experimentally to play an important rule

several models

of protons in

fully all types of

in the electrical

properties of these systems. The present model introduces in a natural way both

types of defects associated with hydrogen-bonded systems. This “s accomplished

:hrough the introduction of a substrate potential which is doubly periodic. A jud-

icious choice of interaction between the two sublattices constituting the system,

leads

when

limit,

to an exact solution of the model in the continuum limit, i.e. in the limit

only long-wavelength excitations are present. It was shown that in this

two kinds of kink solitons emerge, as a result of the double Sine-Gordon

stucture of the equation of motion for the protonic su”blattice. The smaller kinks

of the double sine -C~ordon solution have been associated w;th a transition

(through the small barrier) from one ground-state of the system at T= O to the

next one, and comespond to the ionic defects that are presen~ in the hydrogen-

bonded materials. The other kind of kink, was shown to lead. to rotational or

Bjerrum defects in the one dimensional material.

In the c~ntext of the present model, ionic defects of the hydrogen-bonded

systems have been associated naturally with the small Sine-Gordon-like kinks

(type I), and the rotational or Bjerrum defects have been associated with the

corresponding large kinks (type II). The fo!!owing association holds between soli -

tons in the model

kink / 4 1-

antik ink I -+

and defects in the hydrogen-bonded network:

ionic defect kink 1[ + L Iljcrrum defcc[

I + i~jrric dt’fecv llnttiink II + D Bjerrum (i(’ft’ct
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In the case of ice the ions /-, 1+, are OH- and H30+ respectively.

When an external electric field is applied in the system, the various defects

respond differently, according to their respective charges and effective masses. In

particular the mobilitics of small and large solitons are quite different as has been

observed in mobility measurements derived through numerical simulations. ‘0

When an ensemble of defects 1s present in the system the individual nobilities as

well as the collisiori properties of the defects will determine the macroscopic con-

duction properties of the system.

In the present paper we have made a detailed presentation of some of the

basic properties of a new physical model pertaining to hydrogen-bonded networks.

In particular, in the context of the model we presented, the collective dynamics

of protons in such a system can be assc:,~~d both qualitatively and quantitatively.

The double-defect model can be solved analytically (in the continuum limit) in

two particular cases, viz. for Q z= O and for Q 2# O provided that V= UO. Following

these analytical results we explored numerically the relevant dynamics for mean

ingfu 1 parameter values. Free propagation as well as collision properties of both

iypes of de f~cts have been studied. Analysis of the response of the defects when

external electric field is applied in the system as well as dynamics at finite tem-

peratures will be published elsewhere.

The parameter values used in the present paper were chosen as to

correspond to the hexagonal crystalline ice form (ice Ih). The coupling constant

~ was takeu to be quite small 29 in order to avoid dramatic effects in the proton

dynamics. Although the exact value of x for ice is not known with certainty, it is

possible that one has to consider substantially larger values, perhaps an order of

magnitude larger, than the one chosen for the present study. In this cuse, an

amplificatioil of the role of the ionic substrate is expected.



A serious shortcoming for the present one-dimensional model is the LIUe

three dimensional nature of real solids such as crystalline ice Ih. Although.

Bernal-Fowler filaments in ice provide quasi-one dimensional chains, the interdic-

tion among these chains must be taken into account in a complete physical model

for ihiS system. Nevertheless, the zig-zag, quasi-one dimensional structure that ‘

exemplified by such fi’.aments in ice, can be found in abundance in nature, espe-

cially in biological systems. The electrical properties of such proton dominated

networks are similar to those of ice 33. A particularly good candidate for our

present model is provided by crystalline hydrogen fluoride 4; we will report on

that system elsewhere.
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Figure (’aptions

Figure 1: The substrate potential 1’ ,(.r) is plotted as a function t~f the dis-

t:~nce ulong u hydrogen -l~onded netw{~rk. The he:ivy ion:; (I:lrgc solid circles) :Ind

the protons ( small soiid circles) ilre shown in the ~ig-~iig p,cornctry L)f ii

hydro~en-hmnded network. The period icity of the on-site potential I’l(.r ) is 4n

iind u is equtil to ().6486.

Figure 2: The substrate poterl[i;i] k’ , (curve ;~) is comp:lrerj with (ii) the

interaction function @(r ) (curve h) i~s ii function of dist:ince, und (b) with

-@(r) (curve b). The former ciise fiiv~rs Bjerrum defect motion whereith the

l;lt[er reduces the hydrogen-bond hitrrier and thus fiiv~r~ ionic defect motion.

Figure 3: The dispersion curve O.Xk) versus k is plotttd for ([i) both subl;lt -

ticcs iind f~~r the v:\l IIe of thr: nonlinciirity piirilmetcr tt]iit hiis been IISCd in the’

SiIllllliitiOll S. in ( b) the dispersion curve for the hi~rmonic proton rtloti~)n i~

presented ( curve ii) iind ~.(~lllpiircd with the [~IIC ohtiiirlc(j ft~r il I:lrgc ~ ( l.urvc h:

thr \’illll C (~! the nonlincilrity pilrillll Cter is 100” times I:lrgcr thiln the (JI)C llsc~l in

the Sir]l Ulil Ii(~ll S). in (c’) the dispersion c’urvc for ions is shown (~’l]rvc il ) ;111(!

c“{)l~~piircd with t)ne for wtlic.h x is 10 times lilrgcr ((’urvc h)

l;i~urc 4: “1’W(>L’(llll~l(JllClllsolitons” tor !) ; ‘- (), WC plot : ( il) 11)(’ sn];lll kll)k

( l(}nic dct’ct’t), ( h) the slope dw/dt of the ionic dcforrniltiorl” iln(i (c’) the lt~rlll’

~lel{~rm;llion itscli,

l:ilqurc 5: Silmc Ils in l;ig, 4, hilt I(}r lilrg~ kinks ( Il,\err\iill (jcfc L.ts). W’C

sho W: Irl (ii) il Iiirgc kink, III ( b) thC slope of th~ in(!u~.r(! ron]c (!ef(}rt~liltit~ll iIIl(!

11) (1’) 115 \]l*ltli\l (~C\~C’l\(l C’fl(’C,

)’lgllrr (1: Ill (;1) Wc plot I)IC 10111(” (l Ctl~l”lll; it loll II J(II14’C(I I)V il Sill illl l)lol(~lll(”

hll)h (~11 tll~ 101)lls Y\llJli\ltli’C ill (I}C lower 1“1’111(’;11 V~l\)(’lt~ l),, WC llot~ ll\C (!1 ;l~lli’

(“il:lllpc 11) [II(’ $Iltlpr 01 tllc (It-( of[ll; l(l(}ll ;1’, (’l)lllp:l[c(t Wlttl :11:1[ (Irl)l(lf(l Ill 1’ 11’ 1[

Ill (1)) W(- >tlo\\ IIlc (’ofrr\ [)1)1)(111 l/: 10111( ~lrf{)llll;lllt)rl ~)f d liir~r hlllh
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Figure 7: Collision oi two smull kinks with small inilitil velocitles$ Initidlly

we c.re;ite N sm:ill kink with vcl~~city I)= ().5 in posi[ ion 150 and a snl;ill ;lnti!iillk

~~() The tw~l s~lit{>ns move :~g:iinst e:]ch (~th~r.uith vrlocity u= –0.6 in positiiln -. ,

~ ~llidt. :ind they virtu:illy iinnihiitite themselves leiivifig in pl~icc N dc.c;l!’ing

bre:lther (ii). In (b) wc show the dyn;lmic evolution Lis seen in the ionic suhl:\t -

ticc. S:nc-e the ionic suhlattice has not been initiully excited, scver:tl c)scill;~t(~ry

mldes ::re observed ir~ addition to the triivelling ionic de formiition.

};igure 8: A ~mi~ll kink -:intikink pair with inititilly I;irge velocities ( here ht~th

t:l:(en equ:il t[~ 10.() und in opposite directions) are seen to undergo ii collision f(~l-

It>wcd by :t reflection (it), In (b) the evolution in the ionic luttice is sht~wn,
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